skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shandas, Vivek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The benefits of the urban tree and tree canopy (UTC) are increasingly crucial in addressing urban sustainability. Yet, increasingly evident from earlier research is the distributional inequities of UTC and active efforts to expand tree plantings. Less is known about the dynamics of UTC loss over time and location. This study aims to understand the dynamics of UTC change, especially canopy loss, and to investigate the drivers of the loss. This study draws on a high–resolution dataset of an urban canopy in Portland, Oregon, USA, assessing changes in UTC from 2014 to 2020. By integrating demographic, biophysical, and policy data with UTC information, we use a spatial autoregressive model to identify the drivers of UTC loss. The results reveal an unexpected spatial distribution of UTC change: less gain in the neighborhoods with the least UTC, and greater loss in the neighborhoods with moderate UTC. This study identifies four primary drivers of UTC loss: socioeconomic characteristics, urban form, activities on trees, and residential status. Factors such as population density, race, and income have an impact on canopy loss, as well as the building footprint and the number of multifamily housing units; residential statuses, such as the proportion of owner-occupied housing and residential stability, impact canopy loss. 
    more » « less
  2. Abstract Tree cover is generally associated with cooler air temperatures in urban environments but the roles of canopy configuration, spatial context, and time of day are not well understood. The ability to examine spatiotemporal relationships between trees and urban climate has been hindered by lack of appropriate air temperature data and, perhaps, by overreliance on a single ‘tree canopy’ class, obscuring the mechanisms by which canopy cools. Here, we use >70 000 air temperature measurements collected by car throughout Washington, DC, USA in predawn (pd), afternoon (aft), and evening (eve) campaigns on a hot summer day. We subdivided tree canopy into ‘soft’ (over unpaved surfaces) and ‘hard’ (over paved surfaces) canopy classes and further partitioned soft canopy into distributed (narrow edges) and clumped patches (edges with interior cores). At each level of subdivision, we predicted air temperature anomalies using generalized additive models for each time of day. We found that the all-inclusive ‘tree canopy’ class cooled linearly at every time (pd = 0.5 °C ± 0.3 °C, aft = 1.8 °C ± 0.6 °C, eve = 1.7 °C ± 0.4 °C), but could be explained in the afternoon by aggregate effects of predominant hard and soft canopy cooling at low and high canopy cover, respectively. Soft canopy cooled nonlinearly in the afternoon with minimal effect until ∼40% cover but strongly (and linearly) across all cover fractions in the evening (pd = 0.7 °C ± 1.1 °C, aft = 2.0 °C ± 0.7 °C, eve = 2.9 °C ± 0.6 °C). Patches cooled at all times of day despite uneven allocation throughout the city, whereas more distributed canopy cooled in predawn and evening due to increased shading. This later finding is important for urban heat island mitigation planning since it is easier to find planting spaces for distributed trees rather than forest patches. 
    more » « less
  3. The urban heat island (UHI) concept describes heat trapping that elevates urban temperatures relative to rural temperatures, at least in temperate/humid regions. In drylands, urban irrigation can instead produce an urban cool island (UCI) effect. However, the UHI/UCI characterization suffers from uncertainty in choosing representative urban/rural endmembers, an artificial dichotomy between UHIs and UCIs, and lack of consistent terminology for other patterns of thermal variation at nested scales. We use the case of a historically well-enforced urban growth boundary (UGB) around Portland (Oregon, USA): to explore the representativeness of the surface temperature UHI (SUHI) as derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature data, to test common assumptions of characteristically “warm” or “cool” land covers (LCs), and to name other common urban thermal features of interest. We find that the UGB contains heat as well as sprawl, inducing a sharp surface temperature contrast across the urban/rural boundary. The contrast ranges widely depending on the end-members chosen, across a spectrum from positive (SUHI) to negative (SUCI) values. We propose a new, inclusive “urban thermal deviation” (UTD) term to span the spectrum of possible UHI-zero-UCI conditions. We also distinguish at finer scales “microthermal extremes” (MTEs), discrete areas tending in the same thermal direction as their LC or surroundings but to extreme (hot or cold) values, and microthermal anomalies (MTAs), that run counter to thermal expectations or tendencies for their LC or surroundings. The distinction is important because MTEs suggest a need for moderation in the local thermal landscape, whereas MTAs may suggest solutions. 
    more » « less